Marginally restricted sequential D-optimal designs
نویسندگان
چکیده
In many experiments, not all explanatory variables can be controlled. When the units arise sequentially, different approaches may be used. The authors study a natural sequential procedure for “marginally restricted” D-optimal designs. They assume that one set of explanatory variables (x1) is observed sequentially, and that the experimenter responds by choosing an appropriate value of the explanatory variable x2. In order to solve the sequential problem a priori, the authors consider the problem of constructing optimal designs with a prior marginal distribution for x1. This eliminates the influence of units already observed on the next unit to be designed. They give explicit designs for various cases in which the mean response follows a linear regression model; they also consider a case study with a nonlinear logistic response. They find that the optimal strategy often consists of randomizing the assignment of the values of x2. Plans séquentiels D-optimaux sous contraintes marginales Résumé : Dans bien des expériences, on ne peut pas contrôler toutes les variables explicatives. Lorsque les unités arrivent séquentiellement, diverses approches sont possibles. Les auteurs étudient une procédure séquentielle naturelle pour les plans D-optimaux sous “contraintes marginales.” Ils supposent qu’un ensemble de variables explicatives (x1) est observé séquentiellement et que l’expérimentateur réagit en choisissant un niveau approprié pour la variable explicative x2. Pour résoudre ce problème séquentiel a priori, les auteurs proposent la construction de plans optimaux étant donné une loi a priori marginale pour x1. Ceci a pour effet d’éliminer l’influence des unités déjà observées sur l’affectation de la prochaine unité. Ils fournissent des plans explicites dans divers cas où la réponse moyenne est modélisée par régression linéaire ; ils traitent aussi un exemple concret dans lequel la réponse est non linéaire et logistique. Ils concluent que la stratégie optimale consiste souvent à randomiser l’affectation des valeurs de x2.
منابع مشابه
Construction of marginally and conditionally restricted designs using multiplicative algorithms
The problem of constructing optimal designs when some of the factors are not under the control of the experimenters is considered. Their values can be known or unknown before the experiment is carried out. Several criteria are taken into consideration to find optimal conditional designs given some prior information on the factors. In order to determine these optimal conditional designs a class ...
متن کاملDesign and Test of New Robust QCA Sequential Circuits
One of the several promising new technologies for computing at nano-scale is quantum-dot cellular automata (QCA). In this paper, new designs for different QCA sequential circuits are presented. Using an efficient QCA D flip-flop (DFF) architecture, a 5-bit counter, a novel single edge generator (SEG) and a divide-by-2 counter are implemented. Also, some types of oscillators, a new edge-t...
متن کاملA D-Optimal Design for Estimation of Parameters of an Exponential-Linear Growth Curve of Nanostructures
We consider the problem of determining an optimal experimental design for estimation of parameters of a class of complex curves characterizing nanowire growth that is partially exponential and partially linear. Locally D-optimal designs for some of the models belonging to this class are obtained by using a geometric approach. Further, a Bayesian sequential algorithm is proposed for obtaining D-...
متن کاملEfficient group sequential designs when there are several effect sizes under consideration.
We consider the construction of efficient group sequential designs where the goal is a low expected sample size not only at the null hypothesis and the alternative (taken to be the minimal clinically meaningful effect size), but also at more optimistic anticipated effect sizes. Pre-specified Type I error rate and power requirements can be achieved both by standard group sequential tests and by ...
متن کاملOptimal Designs for Rational Models and Weighted Polynomial Regression by Holger Dette,
In this paper D-optimal designs for the weighted polynomial regresŽ 2 . n sion model of degree p with efficiency function 1 x are presented. Interest in these designs stems from the fact that they are equivalent to locally D-optimal designs for inverse quadratic polynomial models. For the unrestricted design space and p n, the D-optimal designs put equal masses on p 1 points which coincide with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008